Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

Learning Target 1: Identify and graph quadratic functions (Section 4-1 Pg. 194)

1.) Identify the Vertex, Axis of Symmetry, Max/Minimum, Domain/Range for each of the graphs below

2.) For each of the quadratic functions, give the Vertex, AOS, Max/Min, Domain/Range

$$
f(x)=(x+1)^{2}+10 \quad f(x)=(x-7)^{2}+2
$$

3.) Give the translation of each of the functions below from the parent function $y=x^{2}$

$$
f(x)=(x-6)^{2}+2 \quad f(x)=(x+5)^{2}-4
$$

4.) A. In the $x y$-plane, the graph of $y=(x+2)^{2}-10$ intersects the graph of $y=2 x+6$ at the point $(0,6)$ and one other point. What is the other point?
B. In the $x y$-plane, the graph of $y=3 x^{2}-14 x$ intersects the graph of $y=x$ at the points $(0,0)$ and (a, a). What is the value of a ?

Learning Target 2: Model with quadratic functions (4-3 Pg. 209)

5.) Find the equation in standard form $\left(y=a x^{2}+b x+c\right)$ for each of the parabolas that passes through the set of points:
$(0,17) ;(-1,8) ;(-5,-8)$
$(0,10) ;(4,-6) ;(8,10)$

Learning Target 3: Find common and binomial factors of quadratic expressions (4-4 Pg. 216)

6.) Use double distribution to convert each factored equation into standard form ($\left.y=a x^{2}+b x+c\right)$

$$
f(x)=(x+3)(x+8) \quad f(x)=(x-10)(x+2) \quad f(x)=(2 x+5)(x-7)
$$

7.) Factor each of the expressions:

$$
15 x^{2}-10 x \quad x^{2}+8 x+7 \quad x^{2}+2 x-63
$$

BONUS: Factor each expressions:
$2 x^{2}+11 x+15$
$4 x^{2}+7 x+3$
$6 x^{2}+16 x+10$

